Convergent amino acid signatures in polyphyletic Campylobacter jejuni sub-populations suggest human niche tropism

Abstract

Human infection with the gastrointestinal pathogen C. jejuni is dependent upon the opportunity for zoonotic transmission and the ability of strains to colonize the human host. Certain lineages of this diverse organism are more common in human infection but the factors underlying this overrepresentation are not fully understood. We analysed 601 isolate genomes from agricultural animals and human clinical cases, including isolates from the multi-host (ecological generalist) ST-21 and ST-45 clonal complexes (CCs). Combined nucleotide and amino acid sequence analysis identified 12 human-only amino acid KPAX clusters among polyphyletic lineages within the common disease causing CC21 group isolates, with no such clusters among CC45 isolates. Isolate sequence types within human-only CC21 group KPAX clusters have been sampled from other hosts, including poultry, so rather than representing unsampled reservoir hosts, the increase in relative frequency in human infection potentially reflects a genetic bottleneck at the point of human infection. Consistent with this, sequence enrichment analysis identified nucleotide variation in genes with putative functions related to human colonisation and pathogenesis, in human-only clusters. Furthermore, the tight clustering and polyphyly of human-only lineage clusters within a single clonal complex suggest the repeated evolution of human association through acquisition of genetic elements within this complex. Taken together, combined nucleotide and amino acid analysis of large isolate collections may provide clues about human niche tropism and the nature of the forces that promote the emergence of clinically important C. jejuni lineages.

Publication
Genome Biology and Evolution, 10(3): 763–774. doi: 10.1093/gbe/evy026